
Polyspace® Code Prover™

Getting Started Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Code Prover™ Getting Started Guide
© COPYRIGHT 2013–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2013 Online only Revised for Version 9.0 (Release 2013b)
March 2014 Online Only Revised for Version 9.1 (Release 2014a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introduction to Polyspace Code Prover

1
Polyspace Code Prover Product Description 1-2
Key Features . 1-2

Set Up a Polyspace Project

2
Set Up Polyspace Project . 2-2
Tutorial Overview . 2-2
What Is a Project? . 2-2
Prepare Project Folder . 2-3
Open Polyspace Code Prover . 2-4
Create Project . 2-5
Next steps . 2-6

Server Configuration for Remote Verification
and Polyspace Metrics

3
Set Up Polyspace Metrics . 3-2
Requirements for Polyspace Metrics 3-2
Start Polyspace Metrics Server . 3-3
Configure Polyspace Preference . 3-4
Configure Web Server for HTTPS . 3-5
Change Web Server Port Number for Polyspace Metrics
Server . 3-7

Set Up Remote Verification and Analysis 3-8
Requirements for Remote Verification 3-9

iii

Start Server for Remote Verification and Polyspace
Metrics . 3-10

Configure Polyspace Preferences . 3-11

Run a Verification

4
Run Verification . 4-2
Tutorial Overview . 4-2
Before You Start the Tutorial . 4-2
Prepare for Verification . 4-2
Run Remote Verification . 4-5
Run Local Verification . 4-6
Next steps . 4-8

Review Verification Results

5
Review Results . 5-2
Tutorial Overview . 5-2
Open Results . 5-2
Review Results . 5-3
Generate Report . 5-5
Next steps . 5-6

Check Compliance with Coding Rules

6
Find Coding Rule Violations . 6-2
Tutorial Overview . 6-2
Specify MISRA C Checking . 6-2
Review MISRA C Violations . 6-4

iv Contents

Verifying Code Generated from Simulink
Models

7
Verification of Code Generated from Simulink
Models . 7-2

Verify Code from a Simple Simulink Model 7-3
Create Simulink Model and Generate Code 7-3
Run Polyspace Verification . 7-6
View Results in Polyspace Code Prover 7-6
Trace Error to Simulink Model . 7-8
Specify Signal Ranges . 7-9
Verify Updated Model . 7-11

Code Verification in IBM Rational Rhapsody
Environment

8
Verify Code in IBMRational Rhapsody Environment . . 8-2
Code Verification Approach . 8-2
Adding Polyspace Profile to Model . 8-3
Accessing Polyspace Features . 8-3
Configuring Verification Options . 8-6
Running a Verification . 8-7
Monitoring a Verification . 8-8
Viewing Polyspace Results . 8-8
Locating Faulty Code in Rhapsody Model 8-9
Template Configuration Files . 8-9

v

vi Contents

1

Introduction to Polyspace
Code Prover

1 Introduction to Polyspace® Code Prover™

Polyspace Code Prover Product Description
Prove the absence of run-time errors in software

Polyspace® Code Prover™ proves the absence of overflow, divide-by-zero,
out-of-bounds array access, and certain other run-time errors in C and C++
source code. It produces results without requiring program execution, code
instrumentation, or test cases. Polyspace Code Prover uses static analysis
and abstract interpretation based on formal methods. You can use it on
handwritten code, generated code, or a combination of the two. Each operation
is color-coded to indicate whether it is free of run-time errors, proven to fail,
unreachable, or unproven.

Polyspace Code Prover also displays range information for variables and
function return values, and can prove which variables exceed specified range
limits. Results can be published to a dashboard to track quality metrics and
ensure conformance with software quality objectives. Polyspace Code Prover
can be integrated into build systems for automated verification.

Support for industry standards is available through IEC Certification Kit (for
IEC 61508 and ISO 26262) and DO Qualification Kit (for DO-178).

Key Features

• Proven absence of certain run-time errors in C and C++ code

• Color-coding of run-time errors directly in code

• Calculation of range information for variables and function return values

• Identification of variables that exceed specified range limits

• Quality metrics for tracking conformance with software quality objectives

• Web-based dashboard providing code metrics and quality status

• Guided review-checking process for classifying results and run-time error
status

• Graphical display of variable reads and writes

1-2

2

Set Up a Polyspace Project

2 Set Up a Polyspace® Project

Set Up Polyspace Project

In this section...

“Tutorial Overview” on page 2-2

“What Is a Project?” on page 2-2

“Prepare Project Folder” on page 2-3

“Open Polyspace® Code Prover™” on page 2-4

“Create Project” on page 2-5

“Next steps” on page 2-6

Tutorial Overview
In this tutorial, you create a new Polyspace Code Prover project to verify
C code.

What Is a Project?
A Polyspace Code Prover project consists of:

• Source files.

• Include folders.

• One or more modules. You run verification on the source files in each
module. Each module has the following folders:

- Source — Contains files used for verification.

- Configuration— Contains analysis options used for verification.

- Result — Contains results of verification.

2-2

Set Up Polyspace® Project

Prepare Project Folder
In the following procedures, MATLAB_Install is the MATLAB® installation
folder, for example, C:\Program Files\MATLAB\R2014a.

1 Create the polyspace_project folder in a particular location, for example
C:\.

2 Open polyspace_project and create subfolders:

• sources

• includes

3 Copy the example.c from
MATLAB_Install\polyspace\examples\cxx\Demo_C_Single-File\sources
to polyspace_project\sources.

4 Copy the include.h from
MATLAB_Install\polyspace\examples\cxx\Demo_C_Single-File\sources
to polyspace_project\includes.

2-3

2 Set Up a Polyspace® Project

Open Polyspace Code Prover

• Open directly in your operating system.

- Windows®: From the MATLAB_Install\polyspace\bin folder,
double-click the polyspace-code-prover executable.

You can create a desktop or Start menu shortcut to this executable with
the icon

if it does not already exist.

- Linux®: Run the following command:

/MATLAB_Install/polyspace/bin/polyspace-code-prover

• Open from MATLAB.

From the MATLAB Apps gallery, click the Polyspace Code Prover app.

2-4

Set Up Polyspace® Project

Create Project

• “Open New Project” on page 2-5

• “Specify Source Files and Include Folders” on page 2-6

Open New Project

1 Select File > New Project.

2 In the Project – Properties dialog box:

• For Project name, enter example_project.

• Clear the Use default location check box. To specify where your

polyspace_project folder is, click .

• For Project language, select C.

• Clear the boxes under Project Configuration. For more information
on the option Use template, see “What is a Project Template?”. For
more information on the option Create from build command, see
“Create Projects Automatically from Your Build System”.

3 Click Finish.

2-5

2 Set Up a Polyspace® Project

Specify Source Files and Include Folders

1 In the Project Browser, select the Source folder.

2 On the Project Browser toolbar, click the Add source icon .

3 In the Project – Add Source Files and Include Folders dialog box:

• Select the sources folder that you created. Click Add Source Files.

• Select the includes folder. Click Add Include Folders

Note Polyspace Code Prover automatically adds standard header files
to your project.

4 Click Finish. Your Project Browser must look like this graphic.

Next steps

1 “Run Verification” on page 4-2

2-6

Set Up Polyspace® Project

2 “Review Results” on page 5-2

3 “Find Coding Rule Violations” on page 6-2

2-7

2 Set Up a Polyspace® Project

2-8

3

Server Configuration for
Remote Verification and
Polyspace Metrics

• “Set Up Polyspace Metrics” on page 3-2

• “Set Up Remote Verification and Analysis” on page 3-8

3 Server Configuration for Remote Verification and Polyspace® Metrics

Set Up Polyspace Metrics

In this section...

“Requirements for Polyspace Metrics” on page 3-2

“Start Polyspace Metrics Server” on page 3-3

“Configure Polyspace Preference” on page 3-4

“Configure Web Server for HTTPS” on page 3-5

“Change Web Server Port Number for Polyspace Metrics Server” on page 3-7

Requirements for Polyspace Metrics
You can use Polyspace Metrics to:

• Store verification and analysis results.

• Evaluate and monitor software quality metrics.

The following table lists the requirements for Polyspace Metrics.

Task Location Requirements

Project
configuration
and uploads to
server

Client
node

• MATLAB

• Polyspace Bug Finder™ or Polyspace Code
Prover

Polyspace
Metrics service

Network
server
or head
node of
MDCS
cluster

• MATLAB

• Polyspace Bug Finder

Activation is not required for the Polyspace
Metrics service

3-2

Set Up Polyspace® Metrics

Task Location Requirements

Downloading
complete results
from Polyspace
Metrics

Client
node
or a
network
computer

• MATLAB

• Polyspace Bug Finder or Polyspace Code
Prover

• Access to Polyspace Metrics server

Viewing results
summary from
Polyspace
Metrics

A
network
computer

Access to Polyspace Metrics server.

Start Polyspace Metrics Server

1 Select Options > Metrics and Remote Server Settings.

2 Under Polyspace Metrics Settings, specify:

• User name used to start the service— Your user name.

• Password — Your password.

• Communication port — Polyspace communication port number
(default 12427). This number must be the same as the communication
port number specified on the Polyspace Preferences > Server
Configuration tab

• Folder where analysis data will be stored— Results repository for
Polyspace Metrics.

3 If you want to configure your MDCS head node (for remote verifications
and analyses) as the Polyspace Metrics server, select Start the Polyspace
mdce service without security level. Otherwise, clear this check box.
For more information about starting your remote cluster service, see “Set
Up Remote Verification and Analysis” on page 3-8.

.

4 To start the Polyspace Metrics server, click Start Daemon.

3-3

3 Server Configuration for Remote Verification and Polyspace® Metrics

The software stores the information that you specify through the Metrics and
Remote Server Settings dialog box in the following file:

• On a Windows system, %APPDATA%\PolyspaceRLDatas\polyspace.conf

• On a Linux system, /etc/Polyspace/polyspace.conf

Configure Polyspace Preference

1 Select Options > Preferences.

2 Click the Polyspace Preferences > Server Configuration tab.

3 Under Metrics configuration:

• If you want the software to detect a server on the network that uses port
12427, click Automatically detect the Polyspace Metrics Server.

Otherwise, to specify the host computer for your Polyspace Metrics
server, click Use the following server and port. Enter an IP address
(or server name) and the Polyspace communication port number (default
12427). You must specify the same port number for all clients that use
the Polyspace Metrics service.

• By default, the software selects the Download results automatically
check box.

In the Folder field, specify a local folder for downloading result files
from Polyspace Metrics.

In Polyspace Metrics, when you click an item to view it within the
Polyspace environment, the software downloads results to the analysis
launch folder. If this folder does not exist, the software downloads
results to the folder specified in the Folder field. The default is C:\Temp.

If you clear the Download results automatically check box, when you
click an item in Polyspace Metrics, a dialog box opens. In this dialog
box, you can specify your locally accessible folder. When you exit the
Polyspace environment, the folder and its contents are not deleted.

• In the Port number field, specify the port number for communication
between the Polyspace environment and the Polyspace Metrics Web
interface. The default is 12428.

3-4

Set Up Polyspace® Metrics

• In the Web server port number field, specify the port number for the
Web server. For HTTP, the default is 8080.

If you change the port number from the default, you must configure the
same port number for the Polyspace Metrics server. See “Change Web
Server Port Number for Polyspace Metrics Server” on page 3-7 .

If you use HTTPS for your Web protocol, select Use secure HTTPS
protocol instead of HTTP protocol to access Metrics results.
Specify your port number in the corresponding field. For HTTPS, the
default is 8443.

There are additional steps to set up the Web server for HTTPS. See
“Configure Web Server for HTTPS” on page 3-5.

To view Polyspace Metrics, in the address bar of your Web browser, enter:

protocol://ServerName:WSPN

• protocol is http or https.

• ServerName is the name or IP address of your Polyspace Metrics server.

• WSPN is the Web server port number.

Configure Web Server for HTTPS
By default, the data transfer between Polyspace Code Prover and the
Polyspace Metrics Web interface is not encrypted. You can enable HTTPS for
the Web protocol, which encrypts the data transfer. To set up HTTPS, you
must change the server configuration and set up a keystore for the HTTPS
certificate.

Before you start the following procedure, you must complete “Start Polyspace
Metrics Server” on page 3-3 and “Configure Polyspace Preference” on page 3-4.

To configure HTTPS access to Polyspace Metrics:

1 Open the Metrics and Remote Server Settings dialog box. Run the following
command:

Polyspace_Install\polyspace\bin\polyspace-rl-manager.exe

3-5

3 Server Configuration for Remote Verification and Polyspace® Metrics

2 Click Stop Daemon. The software stops the mdce and Polyspace Metrics
services. Now, you can make the changes required for HTTPS.

3 Open the AppDataPolyspace_RLDatas\tomcat\conf\server.xml file in a
text editor. Look for the following text:

<!-
<Connector port="8443" SSLEnabled="true" scheme="https"
secure="true" clientAuth="false" sslProtocol="TLS"
keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>

->

If the text is not in your server.xml file:

a Delete the entire ..\conf\ folder.

b In the Metrics and Remote Server Settings dialog box, restart the
daemon by clicking Start Daemon.

c Click Stop Daemon to stop the services again so that you can finish
setting up the server for HTTPS.

The conf folder is regenerated, including the server.xml file. The file now
contains the text required to configure the HTTPS Web server.

4 Follow the commented-out instructions in server.xml to create a keystore
for the HTTPS certificate.

5 In the Metrics and Remote Server Settings dialog box, to restart the
Polyspace Metrics service with the changes, click Start Daemon.

To view Polyspace Metrics, in the address bar of your Web browser, enter:

https://ServerName:WSPN

• ServerName is the name or IP address of the Polyspace Metrics server.

• WSPN is the Web server port number.

3-6

Set Up Polyspace® Metrics

Change Web Server Port Number for Polyspace
Metrics Server
If you change or specify a non-default value for the Web server port number of
your Polyspace Code Prover client, you must manually configure the same
value for your Polyspace Metrics server.

1 Select Options > Metrics and Remote Server Settings.

2 In the Metrics and Remote Server Settings dialog box, select Stop Daemon
to stop the Polyspace Metrics server daemon.

3 In AppData\Polyspace_RLDatas\tomcat\conf\server.xml, edit the port
attribute of the Connector element for your Web server protocol.

• For HTTP:

<Connector port="8080"/>

• For HTTPS:

<Connector port="8443" SSLEnabled="true" scheme="https"
secure="true" clientAuth="false" sslProtocol="TLS"
keystoreFile="<datadir>/.keystore" keystorePass="polyspace"/>

4 In the Metrics and Remote Server Settings dialog box, select Start Daemon
to restart the server with the new port number.

5 On the Polyspace toolbar, select Options > Preferences.

6 In the Server Configuration tab, change theWeb server port number to
match your new value.

3-7

3 Server Configuration for Remote Verification and Polyspace® Metrics

Set Up Remote Verification and Analysis

In this section...

“Requirements for Remote Verification” on page 3-9

“Start Server for Remote Verification and Polyspace Metrics” on page 3-10

“Configure Polyspace Preferences” on page 3-11

You can run the following types of verification and analyses.

Analysis type Run when

Remote batch
Remote
interactive

Source files are large (more than 800 lines of code
including comments), and execution time of verification
is long.

Local Source files are small, and execution time of verification
is short.

You can also use Polyspace Metrics with your remote verifications, but it is
not required. For more information about setting up Polyspace Metrics, see
“Set Up Polyspace Metrics” on page 3-2.

The following figure shows a network that consists of a MATLAB
Distributed Computing Server™ cluster and a Parallel Computing Toolbox™
client.Polyspace Code Prover and Polyspace Bug Finder are installed on the
head node and client nodes.

3-8

Set Up Remote Verification and Analysis

To set up remote verification:

1 Configure the head node with the Metrics and Remote Server Settings
dialog box. See, “Start Server for Remote Verification and Polyspace
Metrics” on page 3-10.

2 Configure the client node through the Server Configuration tab. See,
“Configure Polyspace Preferences” on page 3-11.

Requirements for Remote Verification
The following table lists the requirements for remote verification.

Task Location Requirements

Project
configuration
and job
submission

Client
node

• MATLAB

• Parallel Computing Toolbox

• Polyspace Bug Finder or Polyspace Code
Prover

Remote analysis
and verification

Head
node of
MDCS
cluster

• MATLAB Distributed Computing Server

• Polyspace Bug Finder

• Polyspace Code Prover

3-9

3 Server Configuration for Remote Verification and Polyspace® Metrics

For information about setting up a computer cluster, see “Install Products
and Choose Cluster Configuration”.

Start Server for Remote Verification and Polyspace
Metrics
This procedure describes how to set up an MDCS head node that is also the
Polyspace Metrics server. If you do not want to set up Polyspace Metrics, use
the MDCS Admin Center to set up a server for your remote verifications. See
“Install Products and Choose Cluster Configuration”.

1 Select Options > Metrics and Remote Server Settings.

2 Under Polyspace Metrics Settings, specify:

• User name used to start the service— Your user name.

• Password — Your password.

• Communication port — Polyspace communication port number
(default 12427). This number must be the same as the communication
port number specified on the Polyspace Preferences > Server
Configuration tab.

• Folder where analysis data will be stored— Results repository for
Polyspace Metrics.

3 If you want to configure the MDCS head node as the Polyspace Metrics
server, under Polyspace MDCS Cluster Security Settings, you see the
following options with default values:

• Start the Polyspace mdce service without security — Selected.
The mdce service, which is required to manage the MJS, runs on
the MJS host computer with security level 0. If you want to require
authentication to use the remote server, use the MDCS Admin Center.
For more information about setting up security levels, see “Set MJS
Cluster Security”.

• MDCE service port — 27350.

• Security level in the cluster — 0. No security.

3-10

Set Up Remote Verification and Analysis

• Use secure communication – Not selected. Communication is not
encrypted. You can, for example, increase the security level and use
secure communication.

4 To start the Polyspace Metrics and mdce services, click Start Daemon.

The software stores the information that you specify through the Metrics and
Remote Server Settings dialog box in the following file:

• On a Windows system, %APPDATA%\PolyspaceRLDatas\polyspace.conf

• On a Linux system, /etc/Polyspace/polyspace.conf

Configure Polyspace Preferences

1 Select Options > Preferences.

2 Click the Polyspace Preferences > Server Configuration tab.

3 Under MDCS cluster configuration, in the Job scheduler host name
field, specify the computer for the head node of the cluster. This computer
hosts the MATLAB job scheduler (MJS).

You can configure the MJS host through the MATLAB Distributed
Computing Server Admin Center. See “Configure for an MJS”.

4 Under Metrics configuration, specify the host computer for your
Polyspace Metrics server or let Polyspace detect the server. For more
information, see “Set Up Polyspace Metrics” on page 3-2.

3-11

3 Server Configuration for Remote Verification and Polyspace® Metrics

3-12

4

Run a Verification

4 Run a Verification

Run Verification

In this section...

“Tutorial Overview” on page 4-2

“Before You Start the Tutorial” on page 4-2

“Prepare for Verification” on page 4-2

“Run Remote Verification” on page 4-5

“Run Local Verification” on page 4-6

“Next steps” on page 4-8

Tutorial Overview
In this tutorial, you run verification on your source code. Perform the steps
outlined for remote verification if you want to perform verification on another
machine. Otherwise, perform the steps outlined for local verification.

Before You Start the Tutorial
Before you start, you must:

• Complete “Set Up Polyspace Project” on page 2-2. You use the
polyspace_project folder and the example_project.psprj file in this
tutorial.

• “Set Up Remote Verification and Analysis” on page 3-8 for remote
verification and “Set Up Polyspace Metrics” on page 3-2 for Polyspace
Metrics.

Prepare for Verification

Open Project
If example_project.psprj is not already open in the Project Browser, then:

4-2

Run Verification

1 Select File > Open Project.

2 In the Open Project dialog box, from the Look in drop-down list, navigate
to polyspace_project.

3 Select example_project.psprj.

4 Click Open.

4-3

4 Run a Verification

Check for Compilation Issues
During verification, if your source code has compilation errors, the verification
stops. In certain cases, the verification continues but compilation warnings
appear on the Output Summary tab.

To check your project for compilation issues:

1 In the Project Browser, in Include, right-click
polyspace_project\includes. Select Remove. (Missing include files
cause compilation issues.)

2 Select Module_1.

3 On the Project Manager toolbar, click .

The software compiles your code and checks for errors. It reports the
results on the Output Summary tab.

In this case, the software generates warnings in orange for the missing
include files. It is a good practice to resolve warnings for missing include
files first, because they can cause other warnings or errors.

4 In the Project Browser tree, right-click the Include folder. From the
context menu, select Add Source.

5 In the Project - Add Source Files and Include Folders dialog box, select the
includes folder. Select Add Include Folders.

The software adds the includes folder to the Include folder for
example_project.psprj.

4-4

Run Verification

6 Click Finish.

7 In the Project Browser, select Module_1. On the Project Manager

toolbar, click .

The verification runs to completion without include file warnings.

Run Remote Verification

• “Start Verification” on page 4-5

• “Monitor Progress” on page 4-6

• “Stop Verification” on page 4-6

Start Verification

1 On the Project Browser pane, select Module_1.

2 On the Configuration pane, select Distributed Computing.

3 Select Batch. By default, this action enables the Add to results
repository option.

4 On the Project Manager toolbar, click .

The following happens:

a On the local host computer, Polyspace Code Prover compiles your code.

b The Parallel Computing Toolbox then submits the verification to the
MATLAB Job Scheduler on the head node of the MATLAB Distributed
Computing Server cluster.

For more information, see “Phases of Verification”.

Note If you see the message Verification process failed, click OK.
For more information on troubleshooting remote verification errors, see
“Polyspace software cannot find the server”.

4-5

4 Run a Verification

Monitor Progress
To monitor the progress of a remote verification:

1 On the Polyspace Code Prover toolbar, click .

2 In the Polyspace Queue Manager, right-click your verification.

3 Select View Log File.

Stop Verification
To stop a remote verification:

1 On the Polyspace Code Prover toolbar, click .

2 In the Polyspace Queue Manager, right-click your verification.

3 Select Remove From Queue.

Run Local Verification

• “Start Verification” on page 4-6

• “Monitor Progress” on page 4-7

• “Stop Verification” on page 4-7

Start Verification
To start a verification on your local computer:

1 In the Project Manager perspective, in the Project Browser, select
Module_1.

2 On Configuration > Distributed Computing, clear Batch if it is
selected.

3 On the Project Manager toolbar, click .

If the verification fails, see “Troubleshooting in Polyspace Code Prover”.

4-6

Run Verification

Monitor Progress
To monitor the progress of a local verification, on the Output Summary
pane, use the following tabs:

• Progress Monitor

• Full Log

• Output Summary

When the verification is complete, you see:

• The message Verification process completed in the Progress
Monitor.

• The results file, for example Result_1, in the Project Browser.

• Statistics, such as Code covered by verification and Check
Distribution in Dashboard.

Stop Verification
To stop a local verification:

1 On the Project Manager toolbar, click .

A warning dialog box opens.

4-7

4 Run a Verification

2 Click Yes.

The verification stops. If you restart the verification, it starts from the
beginning.

Next steps

1 “Review Results” on page 5-2

2 “Find Coding Rule Violations” on page 6-2

4-8

5

Review Verification Results

5 Review Verification Results

Review Results

In this section...

“Tutorial Overview” on page 5-2

“Open Results” on page 5-2

“Review Results” on page 5-3

“Generate Report” on page 5-5

“Next steps” on page 5-6

Tutorial Overview
In this tutorial, you explore the results of verifying example.c. Before
starting this tutorial, complete “Run Verification” on page 4-2.

Open Results

• “Remote Verification” on page 5-2

• “Local Verification” on page 5-2

Remote Verification
To open results from a remote verification:

1 On the Polyspace user interface toolbar, click the button.

Alternatively, you can enter the remote address directly in a web browser.
For more information, see “Open Remote Verification Results”.

2 Click the Project or Version cell of your verification.

The results are downloaded to your system and opened in the Results
Manager perspective.

Local Verification
Do one of the following:

5-2

Review Results

• If your project is open in the Project Browser, double-click the results
file Result_1.

The software opens the results in the Results Manager perspective.

• If your project is not open in the Project Browser:

1 Select File > Open Result.

2 In the Open Results dialog box, navigate to the results folder:

polyspace_project\Module_1\Result_1\example_project

3 Select example_project.pscp.

4 Click Open.

Review Results
Polyspace performs checks on each operation in your code. The software
reports whether a check is green, red, orange or gray.

Check color Indicates

Red The code operation fails the check on
every execution path.

Green The code operation passes the check
on every execution path.

5-3

5 Review Verification Results

Check color Indicates

Orange The code operation fails the check on
some execution paths.

Gray The code operation is unreachable
from entry-point functions.

1 From the drop-down list on the Results Summary, select Checks by
File/Function.

The checks are grouped by file. Within each file, the checks are grouped
by function.

2 Select the following function names on the Results Summary pane to
view the corresponding line of code on the Source pane:

Function Result Reason

Unreachable_Code The brace { on line 193
is gray.

x is greater than 0.
So the if statement
branch cannot be
reached.

Square_Root The function sqrt on
line 178 is red.

beta is less than
0.75. So the argument
to sqrt is always
negative.

Non_Infinite_Loop The + sign on line 73 is
green.

When y is too large, the
while loop terminates.
So the operation x=x+2
never overflows.

Recursion The / sign on line 132
is orange.

*depth can be less
than zero. Therefore,
at some level in
the recursion, the
denominator can be
zero.

5-4

Review Results

3 Click on the Check column header. From the drop-down list, clear All
and select Illegally dereferenced pointer.

The Results Summary pane displays only the Illegally dereferenced
pointer checks.

4 On the Results Summary pane, select the red Illegally dereferenced
pointer check in the function Pointer_Arithmetic in example.c. Enter
the following review information.

Column Action

Classification High

Status Fix

Comment p points outside array.

Generate Report
To generate a verification report:

1 If your verification results are not already open, open them.

2 Select Run > Run Report > Run Report.

5-5

5 Review Verification Results

3 In the Select Reports section, select Developer.

4 For Output folder, select
polyspace_project\Module_1\Result_1\Polyspace-Doc.

5 For Output format, select PDF .

6 Click Run Report.

The software creates the specified report and opens it.

Next steps
“Find Coding Rule Violations” on page 6-2

5-6

6

Check Compliance with
Coding Rules

6 Check Compliance with Coding Rules

Find Coding Rule Violations

In this section...

“Tutorial Overview” on page 6-2

“Specify MISRA C Checking” on page 6-2

“Review MISRA C Violations” on page 6-4

Tutorial Overview
In this tutorial, you analyze code to demonstrate compliance with established
coding standards such as MISRA C® 2004.

Applying coding rules:

• Reduces amount of unproven code in your verification results.

• Improves the quality of your code.

Before you start, you must “Set Up Polyspace Project” on page 2-2.

Specify MISRA C Checking
To set the MISRA C checking option:

1 Under Module_1 > Configuration, select example_project.

2 On the Configuration pane, under Coding Rules, select the Check
MISRA C:2004 rules box.

3 From the corresponding drop-down list, select custom.

4 Click Edit. The New File dialog box opens, displaying a table of rules.

5 In the New File dialog box, from the Set the following state to MISRA
C:2004 rules drop-down list, select Off. Click Apply.

6 Select for the following rules.

6-2

Find Coding Rule Violations

Rule Number Rule description

16.3 Identifiers shall be given for all
of the parameters in a function
prototype declaration.

17.4 Array indexing shall be the only
allowed form of pointer arithmetic.

Click OK to save the file.

6-3

6 Check Compliance with Coding Rules

7 On the Project Manager toolbar, click .

Review MISRA C Violations
To examine the MISRA C violations:

1 In the Project Browser Result folder, double-click the results file.

The results open in the Results Manager perspective.

2 From the drop-down list on the Results Summary pane, select Checks
by Family.

TheMISRA C:2004 violations appear as a separate group in purple.

3 Expand the nodes and select a coding-rule violation. You see the following.

Pane Result

Source The line containing the rule
violation is highlighted. The
line contains a form of pointer
arithmetic that is not allowed.

Check Details The following information is
displayed:
• Description of violated rule.

• File and function where the rule
violation appears.

4 On the Source pane, right-click the highlighted code. Select Open Source
File.

The example.c file opens in your text editor.

5 Fix the MISRA® violation and rerun the verification. The coding rule
violation no longer appears in the results.

6-4

7

Verifying Code Generated
from Simulink Models

• “Verification of Code Generated from Simulink Models” on page 7-2

• “Verify Code from a Simple Simulink Model” on page 7-3

7 Verifying Code Generated from Simulink® Models

Verification of Code Generated from Simulink Models
With Embedded Coder® or dSPACE® TargetLink® software, you can generate
code from Simulink® models. From Simulink, you can use Polyspace Code
Prover to verify the generated code. The software detects run-time errors in
the generated code and helps you to locate and fix model faults.

Use the following approach:

1 Configure your Simulink model and generate code. See “Model
Configuration for Code Generation and Analysis”.

2 Configure Polyspace verification options. See “Polyspace Configuration
for Generated Code”

Note After generating code, you can run a verification without manual
configuration. By default, Polyspace Code Prover automatically creates a
project and extracts required information from your model. However, you
can also customize your verification. See “Configure Polyspace Options
from Simulink”.

3 Run Polyspace verification. See:

• “Run Analysis for Embedded Coder”

• “Run Analysis for TargetLink”

4 View results, analyze errors, locate and fix model faults. See “View Results
in Polyspace Code Prover”.

The software allows direct navigation from a run-time error in the
generated code to the corresponding Simulink block or Stateflow® chart in
the Simulink model. See “Identify Errors in Simulink Models”.

7-2

Verify Code from a Simple Simulink® Model

Verify Code from a Simple Simulink Model

In this section...

“Create Simulink Model and Generate Code” on page 7-3

“Run Polyspace Verification” on page 7-6

“View Results in Polyspace® Code Prover™” on page 7-6

“Trace Error to Simulink Model” on page 7-8

“Specify Signal Ranges” on page 7-9

“Verify Updated Model” on page 7-11

Create Simulink Model and Generate Code
To create a simple Simulink model and generate code:

1 Open MATLAB. Then start Simulink software.

2 Construct the following model.

3 Select File > Save. Then name the model my_first_code.

4 Select Tools > Model Explorer. The Model Explorer opens.

5 From theModel Hierarchy tree, expand the node my_first_code.

7-3

7 Verifying Code Generated from Simulink® Models

6 Select Configuration > Code Generation, which displays Code
Generation configuration parameters.

7 Select the General tab, and then set the System target file to ert.tlc
(Embedded Coder).

8 Select the Report tab.

9 Select Create code-generation report, and then select Code-to-model
navigation.

10 Select the Templates tab.

11 In the Custom templates section, clear the check box Generate an
example main program.

12 Select the Interface tab.

7-4

Verify Code from a Simple Simulink® Model

13 In the Code interface section, select the Suppress error status in
real-time model data structure check box.

14 Click Apply in the lower-right corner of the window.

15 Select Configuration > Solver, which displays Solver configuration
parameters.

16 In the Solver options section, set the solver Type to Fixed-step. Then,
set the Solver to discrete (no continuous states).

17 Click Apply.

18 Select Configuration > Optimization, which displays Optimization
configuration parameters. Then:

• On the General tab, in the Data initialization section, select the
Remove root level I/O zero initialization check box.

• On the General tab, clear the Use memset to initialize floats and
doubles to 0.0 check box

• On the Signals and Parameters tab, in the Simulation and code
generation section, select the Inline parameters check box.

19 Click Apply.

20 To generate code, from the Simulink model window, select Code > C/C++
Code > Build Model.

21 Save your Simulink model.

7-5

7 Verifying Code Generated from Simulink® Models

Run Polyspace Verification
To start the Polyspace verification:

1 From the Simulink model window, select Code > Polyspace > Verify
Code Generated for > Model.

The verification starts, and you see messages in the MATLAB Command
Window.

Starting Polyspace verification for Embedded Coder

Creating results folder results_my_first_model for system my_first_model

Parameters used for code verification:

System : my_first_model

Results Folder : C:\results_my_first_model

Additional Files : 0

Verifier settings : PrjConfig

DRS input mode : DesignMinMax

DRS parameter mode : None

DRS output mode : None

Model Reference Depth : Current model only

Model by Model : 0

...

2 Follow the progress of the verification in the MATLAB Command window.

Note Verification of this model takes about a minute. A 3,000 block model
will take approximately one hour to verify, or about 15 minutes for each 2,000
lines of generated code.

View Results in Polyspace Code Prover
When the verification is complete, you can view the results using the Results
Manager perspective of the Polyspace Code Prover.

1 From the Simulink model window, select Code > Polyspace > Open
Results > For Generated Code.

After a few seconds, the Results Manager perspective opens.

7-6

Verify Code from a Simple Simulink® Model

2 In the Results Summary view, select the drop-down menu and change
the results organization to List of Checks.

3 Select the orange Overflow check.

The Check Details pane shows information about the orange check, and
the Source pane shows the source code containing the orange check.

This orange check shows a potential overflow issue when multiplying the
signals from the inports In1 and In2. Polyspace software assumes that

7-7

7 Verifying Code Generated from Simulink® Models

the signal values are full range, and the multiplication of the two signals
may result in an overflow.

Trace Error to Simulink Model
To fix this overflow issue, you must return to the Simulink model.

To trace the error to your model:

1 Click the blue underlined link (<Root>/Product) immediately before the
check in the Source pane. The Simulink model opens, highlighting the
block with the error.

2 Examine the model. The highlighted block multiplies two full-range
signals, which could result in an overflow.

The verification has identified a potential bug. This could be a flaw in:

• Design — If the model should be robust for the full signal range, then
the issue is a design flaw. In this case, you must change the model to
accommodate the full signal range. For example, you could saturate the
output of the previous block, or bound the signal with a Switch block.

• Specifications — If the model is supposed to work for specific input
ranges, you can provide these ranges using block parameters or the base
workspace. The next verification will read these ranges from the model,
and the check will be green.

7-8

Verify Code from a Simple Simulink® Model

Specify Signal Ranges
If you constrain the signals in your Simulink model to specified ranges,
Polyspace software automatically applies these constraints during verification
of the generated code. The Overflow check will then be green in the
verification results.

To specify signal ranges using source block parameters:

1 Double-click the In1 source block in your model. The Source Block
Parameters dialog box opens.

2 Select the Signal Attributes tab.

3 Set the Minimum value for the signal to -15.

4 Set the Maximum value for the signal to 15.

7-9

7 Verifying Code Generated from Simulink® Models

5 Click OK.

6 Repeat steps 1–6 for the In2 block.

7 Save your model as my_first_code_bounded.

7-10

Verify Code from a Simple Simulink® Model

Verify Updated Model
After changing the model, you must regenerate code and run verification
again.

To regenerate code and rerun the verification:

1 From the Simulink model, select Code > C/C++ Code > Build Model.

The software generates code for the updated model.

2 Select Code > Polyspace > Verify Code Generated for > Model.

The software verifies the generated code.

3 Select Code > Polyspace > Open Results, which opens Polyspace Code
Prover.

4 In the Results Manager perspective, select the Results Explorer tab.

The Overflow check is now green. Polyspace verification shows that the
generated code does not have run-time errors.

7-11

7 Verifying Code Generated from Simulink® Models

7-12

8

Code Verification in
IBM Rational Rhapsody
Environment

8 Code Verification in IBM® Rational® Rhapsody® Environment

Verify Code in IBM Rational Rhapsody Environment

In this section...

“Code Verification Approach” on page 8-2

“Adding Polyspace Profile to Model” on page 8-3

“Accessing Polyspace Features” on page 8-3

“Configuring Verification Options” on page 8-6

“Running a Verification” on page 8-7

“Monitoring a Verification” on page 8-8

“Viewing Polyspace Results” on page 8-8

“Locating Faulty Code in Rhapsody Model” on page 8-9

“Template Configuration Files” on page 8-9

Code Verification Approach
In a collaborative Model-Driven Development (MDD) environment, software
run-time errors can be produced by either design issues in the model or faulty
handwritten code. You may be able to detect the flaws using code reviews
and intensive testing. However, these techniques are time-consuming and
expensive.

With Polyspace Code Prover, you can verify C, C++ and Ada code that you
generate from your IBM® Rational® Rhapsody® model. As a result, you can
detect run-time errors and automatically identify model flaws quickly and
early during the design process.

For information about installing and using IBM Rational Rhapsody, go to
www-01.ibm.com/software/awdtools/rhapsody/.

The approach for using Polyspace Code Prover within the IBM Rational
Rhapsody MDD environment is:

• Integrate the Polyspace add-in with your Rhapsody project. See “Adding
Polyspace Profile to Model” on page 8-3.

8-2

http://www-01.ibm.com/software/awdtools/rhapsody/

Verify Code in IBM® Rational® Rhapsody® Environment

• If required, specify Polyspace configuration options in the Polyspace
verification environment. See “Configuring Verification Options” on page
8-6.

• Specify the include path to your operating system (environment) header
files and run verification. See “Running a Verification” on page 8-7 and
“Monitoring a Verification” on page 8-8.

• View results, analyze errors, and locate faulty code within model. See
“Viewing Polyspace Results” on page 8-8 and “Locating Faulty Code in
Rhapsody Model” on page 8-9.

Adding Polyspace Profile to Model
Before you try to access Polyspace features, you must add the Polyspace
profile to your model :

1 In the Rhapsody editor, select File > Add Profile to Model. The Add
Profile to Model dialog box opens.

2 Navigate to the folder
MATLAB_Install\polyspace\plugin\rhapsody\profiles\Polyspace.

3 Select the file Polyspace.sbs. Then click Open.

Now, if you right-click a package or file, you see the Polyspace item in the
context menu. Selecting Polyspace opens the Polyspace Verification dialog
box.

Accessing Polyspace Features
To access Polyspace features in the Rhapsody editor:

1 Open the model that you want to verify. For
example, psdemos_uml_link_airbag.rpy in
MATLAB_Install/polyspace/plugin/rhapsody/psdemos.

8-3

8 Code Verification in IBM® Rational® Rhapsody® Environment

2 In the Entire Model View, expand the Packages node.

3 Right-click a package, for example, AirBagFiles.

4 From the context menu, select Polyspace.

The Polyspace Verification dialog box opens.

8-4

Verify Code in IBM® Rational® Rhapsody® Environment

Through the Polyspace Verification dialog box, you can:

• Specify verification options. See “Configuring Verification Options” on
page 8-6.

• Start a verification. See “Running a Verification” on page 8-7.

• Stop a local verification. See “Running a Verification” on page 8-7.

• View verification results. See “Viewing Polyspace Results” on page 8-8.

• Open help.

8-5

8 Code Verification in IBM® Rational® Rhapsody® Environment

• Open the Polyspace Queue Manager. See “Monitoring a Verification” on
page 8-8.

Configuring Verification Options
To specify options for your verification:

1 In the Entire Model View, right-click a package or class, for example,
AirbagControl.

2 From the context menu, select Polyspace.

3 In the Polyspace Verification dialog box, click Configure. The
Configuration pane of the Polyspace verification environment opens.

4 Select options for your verification. In particular, you must specify the
following:

• Target & Compiler > Target operating system (-OS-target)

• Target & Compiler > Dialect (-dialect)

• Target & Compiler > Environment Settings > Include (-include)
— Path to your operating system (environment) header files.

• Distributed Computing > Batch (-include) — For local verification,
clear the check box. For remote verification, select the check box.

8-6

Verify Code in IBM® Rational® Rhapsody® Environment

5 To save your options, on the toolbar, click .

For information on how to choose your options, see:

• “Analysis Options for C Code”

• “Analysis Options for C++ Code”

Running a Verification
Before starting a verification, make sure that the generated code for the
model is up to date.

To start a verification:

1 In the Rhapsody editor, select Tools > Polyspace. The Polyspace
Verification dialog box opens.

2 In the Results folder field, specify a location for your verification results.

3 Select the Verification mode. Click Class or File. If you click Class,
from the Class to verify drop-down list, select a specific class. In addition,
underVerify with (highlight classes), you can select other classes from
the displayed list.

4 Click Run. In the Log view of the Rhapsody editor, you see verification
messages.

To stop a local verification, in the Polyspace Verification dialog box, click Stop.

To stop a remote verification, use Polyspace Metrics or the Queue Manager.
See:

• “Manage Previous Verifications With Polyspace Metrics”

• “Manage Remote Verifications”

.

8-7

8 Code Verification in IBM® Rational® Rhapsody® Environment

Monitoring a Verification
If your verification is local, you can observe progress in the Log view of the
Rhapsody editor.

If your verification is remote, use Polyspace Metrics or the Queue Manager.

For more information, see:

• “Manage Previous Verifications With Polyspace Metrics”

• “Manage Remote Verifications”

Viewing Polyspace Results
To view results from the last local verification:

1 In the Rhapsody editor, select Tools > Polyspace.

2 In the Polyspace Verification dialog box, click Open Results.

The software displays results in the Results Manager perspective.

To view results from remote verifications, use Polyspace Metrics or the Queue
Manager.

For more information, see “Run-Time Error Review”.

Declarations for C Functions Without Arguments
By default, Rhapsody generates declarations for functions without
parameters, using the form:

void my_function()

rather than:

void my_function(void)

This can result in the following Polyspace compilation error:

Fatal error: function 'my_function' has unknown prototype.

8-8

Verify Code in IBM® Rational® Rhapsody® Environment

To avoid this problem, in Rhapsody, at the project level, set the property
C_CG::Configuration::EmptyArgumentListName to void.

Locating Faulty Code in Rhapsody Model
To identify the faulty code within your Rhapsody model using Polyspace
verification results:

1 In the Results Manager perspective, navigate to an error, for example.

2 In the Source pane, right-click the error. From the context menu, select
Back To Model.

Tip For the Back To Model command to work, you must have your
Rhapsody model open.

The Back To Model command works best when the Polyspace check is
enclosed by the tags //#[and]#//.

The software locates the faulty code within your Rhapsody model.
Depending on the Rhapsody configuration, the faulty code appears either
in a dialog box or in the code view.

The 64-bit version of the Polyspace product supports the Back To Model
command only for version 8.0 of the IBM Rational Rhapsody product. For
other versions, use the 32-bit Polyspace version.

To install the 32-bit Polyspace version, from a DOS command window,
run the following command:

DVD\Installer32bits\Windows\Disk1\InstData\VM\Polyspace.exe

Template Configuration Files

• “Using Template Configuration Files” on page 8-10

• “Default Configuration Options” on page 8-10

8-9

8 Code Verification in IBM® Rational® Rhapsody® Environment

Using Template Configuration Files
The first time you perform a verification, the software
copies a template, Polyspace configuration file, from
Polyspace_Install/polyspace/plugin/rhapsody/etc/template_language.psprj
to the project folder. The software also renames the copy
model_language.psprj, where:

• model is the name of your model.

• language is the name of the language that the model targets, that is, C
or C++.

You can update the template .psprj file by one of the following means:

• Editing it through the Polyspace verification environment

• Double-clicking the file in a Windows Explorer window

• Replacing the template file with a copy of the .psprj file from a Rhapsody
model folder

You can then share a configuration among project members and use the
configuration with other projects.

Default Configuration Options
The template_language.psprj XML files specify the default option values
for code verification.

The file template_C.psprj is:

<?xml version="1.0" encoding="UTF-8"?>

<polyspace_project name="template_psprj" language="C" author="polyspace"

version="1.0" date="08/04/2011" path="file:/C:/Polyspace/Polyspace_Common

/Rhapsody/PolyspaceUMLLink/etc/template_C.psprj">

<source>

</source>

<include>

</include>

<module name="Verification_1" isactive="true">

<source>

</source>

8-10

Verify Code in IBM® Rational® Rhapsody® Environment

<optionset name="template_psprj" isactive="true">

<option flagname="-OS-target">no-predefined-OS</option>

<option flagname="-allow-undef-variables">true</option>

<option flagname="-respect-types-in-fields">true</option>

<option flagname="-respect-types-in-globals">true</option>

</optionset>

</module>

</polyspace_project>

The file template_C++.psprj is:

<?xml version="1.0" encoding="UTF-8"?>

<polyspace_project name="template_psprj" language="C++" author="polyspace"

version="1.0" date="08/04/2011" path="file:/C:/Polyspace/Polyspace_Common

/Rhapsody/PolyspaceUMLLink/etc/template_C++.psprj">

<source>

</source>

<include>

</include>

<module name="Verification_1" isactive="true">

<source>

</source>

<optionset name="template_psprj" isactive="true">

<option flagname="-D">[OM_NO_FRAMEWORK_MEMORY_MANAGER]</option>

<option flagname="-OS-target">no-predefined-OS</option>

<option flagname="-allow-undef-variables">true</option>

<option flagname="-dialect">gnu</option>

<option flagname="-respect-types-in-fields">true</option>

<option flagname="-respect-types-in-globals">true</option>

<option flagname="-target">i386</option>

</optionset>

</module>

</polyspace_project>

8-11

	toc
	Introduction to Polyspace Code Prover
	Polyspace Code Prover Product Description
	Key Features

	Set Up a Polyspace Project
	Set Up Polyspace Project
	Tutorial Overview
	What Is a Project?
	Prepare Project Folder
	Open Polyspace Code Prover
	Create Project
	Open New Project
	Specify Source Files and Include Folders

	Next steps

	Server Configuration for Remote Verification and Polyspace Metri
	Set Up Polyspace Metrics
	Requirements for Polyspace Metrics
	Start Polyspace Metrics Server
	Configure Polyspace Preference
	Configure Web Server for HTTPS
	Change Web Server Port Number for Polyspace Metrics Server

	Set Up Remote Verification and Analysis
	Requirements for Remote Verification
	Start Server for Remote Verification and Polyspace Metrics
	Configure Polyspace Preferences

	Run a Verification
	Run Verification
	Tutorial Overview
	Before You Start the Tutorial
	Prepare for Verification
	Open Project
	Check for Compilation Issues

	Run Remote Verification
	Start Verification
	Monitor Progress
	Stop Verification

	Run Local Verification
	Start Verification
	Monitor Progress
	Stop Verification

	Next steps

	Review Verification Results
	Review Results
	Tutorial Overview
	Open Results
	Remote Verification
	Local Verification

	Review Results
	Generate Report
	Next steps

	Check Compliance with Coding Rules
	Find Coding Rule Violations
	Tutorial Overview
	Specify MISRA C Checking
	Review MISRA C Violations

	Verifying Code Generated from Simulink Models
	Verification of Code Generated from Simulink Models
	Verify Code from a Simple Simulink Model
	Create Simulink Model and Generate Code
	Run Polyspace Verification
	View Results in Polyspace Code Prover
	Trace Error to Simulink Model
	Specify Signal Ranges
	Verify Updated Model

	Code Verification in IBM Rational Rhapsody Environment
	Verify Code in IBM Rational Rhapsody Environment
	Code Verification Approach
	Adding Polyspace Profile to Model
	Accessing Polyspace Features
	Configuring Verification Options
	Running a Verification
	Monitoring a Verification
	Viewing Polyspace Results
	Declarations for C Functions Without Arguments

	Locating Faulty Code in Rhapsody Model
	Template Configuration Files
	Using Template Configuration Files
	Default Configuration Options

